SHORT-FORMAT PAPERS

Contributions intended for publication under this heading should follow the format given in the Checklist for Authors Acta Cryst. (1985). C41, 1-4].

Acta Crvst. (1988). C44, 565-566

18-Crown-6–Potassium Picrate(1/1)

By JOHN C. BARNES* AND JANE COLLARD

Chemistry Department, The University, Dundee DD1 4HN, Scotland

C1 C2 O3 C4 C5 O6 C7

(Received 29 September 1987; accepted 9 November 1987)

Abstract. 1,4,7,10,13,16-Hexaoxacyclooctadecanepotassium picrate (1/1), $C_{12}H_{24}O_6K^+$. $C_6H_2N_3O_7^-$, M_r = 533.53, triclinic, $P\overline{1}$, a = 9.078 (3), b = 11.796 (5), c = 11.843 (5) Å, $\alpha = 89.70$ (4), $\beta = 77.41$ (3), $\gamma =$ $V = 1198 \cdot 31 \text{ Å}^3$, $D_r =$ $75.81(3)^{\circ}$, Z = 2, 1.47 Mg m⁻³, λ (Cu Ka) = 1.5418 Å, μ = 2.462 mm⁻¹, F(000) = 554, T = 293 K, R = 0.082 for 2459 reflexions. The six O atoms of 18-crown-6 are alternately +0.195(9) Å from their mean plane with the O-C-C-O torsion angles $|65 \cdot 8(8)|^\circ$. The K atom lies 0.892 (1) Å below the centre of this group of O atoms with the diametric O-K-O angles 144.5 (3)°. The shortest K-O distances are 2.741 (3) Å, from the picrate O atom, and 2.846 (4) Å, from an o-nitro group. The K- $O_{(crown)}$ distance lie between 2.862 (4) and 2.989 (4) Å.

Experimental. Yellow plates as by-product from the recrystallization of the orange 18-crown-6 potassium salt of the Meissenheimer anion (I) from ethyl acetate.

Stoe-Siemens 4-circle diffractometer (Edinburgh University). Capillary-mounted crystal $0.50 \times 0.65 \times$ 0.04 mm. Unit cell refined from 18 precisely set reflexions with $36 < 2\theta < 45^{\circ}$. 3394 measured reflexions gave 3379 unique data (R_{int} meaningless with only 15 repeated determinations, all weak). Index range $-9 \leq$ $h \le 9, -13 \le k \le 13, 0 \le l \le 13, 2\theta_{\max}$ 119°. 2459

* To whom correspondence should be addressed.

0108-2701/88/030565-02\$03.00

reflexions with $F_a > 3\sigma_F$ used in the refinement. Programs used: SHELXS86 (Sheldrick, 1986), SHELX76 (Sheldrick, 1976), XANADU (Roberts & Sheldrick, 1975) and PLUTO (Motherwell & Clegg, 1978). Atomic scattering curves from SHELX76.

Structure solution by routine direct methods. Refinement minimizing $\sum w |F_o| |F_c| |^2$ to R 0.082, wR 0.119. All non-H atoms anisotropic; H atoms on calculated positions, U(H) refined to 0.106(5)Å² for

Table 1. 18-Crown-6-potassium picrate coordinates $(\times 10^4)$ for non-H atoms and U_{eq} values $(Å^2 \times 10^3)$ with e.s.d.'s in parentheses

$$U_{\rm eq} = \frac{1}{3} \sum_{i} \sum_{j} U_{ji} a_{i} a_{j} \mathbf{a}_{i}^{*} \mathbf{a}_{i}^{*}$$

	x	у	Ζ	U_{eu}
K1	723(1)	7921 (1)	3148 (1)	63 (1)
CI	-2961(8)	7045 (6)	3582 (7)	91 (2)
Č2	-2779 (8)	6873 (6)	4773 (6)	90 (2)
03	-1201 (5)	6680 (3)	4800 (3)	80(1)
C4	-959 (9)	6507 (6)	5947 (5)	95 (2)
C5	724 (9)	6377 (5)	5914 (5)	90 (2)
06	1090 (5)	7442 (3)	5565 (3)	78 (1)
Č7	2622 (8)	7463 (6)	5646 (5)	86 (2)
Č8	2856 (8)	8647 (6)	5365 (5)	83 (2)
09	2839 (5)	8820 (3)	4190 (3)	76(1)
C10	3045 (9)	9936 (6)	3866 (6)	91 (2)
CII	2894 (8)	10122 (6)	2650 (5)	85 (2)
012	1332 (5)	10221 (3)	2602 (3)	76(1)
C13	1127 (8)	10457 (6)	1476 (5)	84 (2)
C14	-564 (9)	10588 (6)	1488 (5)	98 (2)
015	-917 (5)	9507 (4)	1738 (3)	84 (1)
C16	-2521 (8)	9523 (7)	1784 (5)	92 (2)
C17	-2775 (8)	8346 (6)	2062 (6)	89 (2)
018	-2549 (4)	8106 (3)	3187 (3)	76 (1)
C21	4582 (6)	6586 (4)	1056 (4)	53(1)
C22	5674 (6)	6627 (4)	-46 (4)	56 (1)
C23	7023 (6)	5832 (4)	-489 (4)	61(1)
C24	7530 (6)	4914 (5)	187 (5)	66 (<u>l</u>)
C25	6618 (6)	4792 (4)	1267 (4)	63 (1)
C26	· 5257 (6)	5585 (4)	1673 (4)	53 (1)
027	3345 (4)	7308 (3)	1394 (3)	69 (1)
N28	5202 (6)	7612 (4)	-756 (4)	71(1)
O29	5260 (6)	7415 (4)	-1772 (4)	111 (2)
O30	4846 (6)	. 8591 (4)	-310 (4)	104 (1)
N31	8973 (6)	4046 (5)	-261 (5)	88 (2)
O32	9672 (5)	4135 (4)	-1258 (5)	121 (2)
033	9438 (6)	3265 (5)	381 (5)	122 (2)
N34	4362 (6)	5381 (4)	2807 (4)	68 (1)
035	5078 (5)	4869 (4)	3498 (4)	96 (1)
036	2939 (5)	5726 (4)	3028 (3)	85(1)

© 1988 International Union of Crystallography

Table	2.	18-Crown-6-potassium	picrate	interatomic
		distances (Å) and angles (°)		

03-K1 06-K1 09-K1 012-K1 015-K1 018-K1 027-K1 036-K1 027-C1 018-C1 03-C2 C4-03 05-C4 06-C5 C7-06 C8-C7 09-C8 C10-09 C11-C10 012-C11 C13-012	2-959 (4) 2-989 (4) 2-886 (5) 2-941 (4) 2-862 (4) 2-741 (3) 2-846 (4) 1-463 (11) 1-440 (8) 1-402 (8) 1-402 (8) 1-428 (8) 1-428 (8) 1-421 (9) 1-488 (10) 1-490 (7) 1-414 (8) 1-486 (9) 1-403 (7)	C14-C13 O15-C14 C16-O15 C17-C16 O18-C17 C22-C21 C26-C21 O27-C21 C23-C22 N28-C22 C24-C23 C25-C24 N31-C24 C26-C25 N34-C26 O29-N28 O30-N28 O32-N31 O35-N34 O36-N34	$\begin{array}{c} 1.501 \ (11) \\ 1.405 \ (9) \\ 1.441 \ (9) \\ 1.487 \ (11) \\ 1.409 \ (8) \\ 1.465 \ (6) \\ 1.461 \ (7) \\ 1.219 \ (5) \\ 1.348 \ (6) \\ 1.453 \ (7) \\ 1.390 \ (7) \\ 1.390 \ (7) \\ 1.390 \ (7) \\ 1.345 \ (6) \\ 1.446 \ (6) \\ 1.443 \ (6) \\ 1.443 \ (6) \\ 1.443 \ (6) \\ 1.443 \ (6) \\ 1.443 \ (6) \\ 1.443 \ (6) \\ 1.443 \ (6) \\ 1.444 \ (8) \\ 1.211 \ (7) \\ 1.229 \ (8) \\ 1.221 \ (7) \\ 1.221 \ (7) \\ 1.224 \ (7) \end{array}$
06-K1-03 09-K1-03 09-K1-03 012-K1-03 012-K1-09 015-K1-09 015-K1-012 015-K1-012 018-K1-012 018-K1-012 018-K1-012 018-K1-012 018-K1-012 018-K1-012 018-K1-012 018-K1-012 027-K1-06 027-K1-012 027-K1-015 027-K1-015 027-K1-015 036-K1-03 036-K1-03 036-K1-012 036-K1-027 036-K1-012 036-K1-012 036-K1-012 036-K1-027 036-K1-012 036-K1-027 036-K1	$\begin{array}{c} 55.6 (1) \\ 112.5 (1) \\ 57.1 (1) \\ 144.1 (1) \\ 108.0 (1) \\ 58.4 (1) \\ 115.5 (1) \\ 144.8 (1) \\ 157.1 (1) \\ 57.4 (1) \\ 106.0 (1) \\ 144.4 (1) \\ 107.7 (1) \\ 136.6 (1) \\ 117.7 (1) \\ 136.6 (1) \\ 117.7 (1) \\ 136.8 (1) \\ 78.8 (1) \\ 78.8 (1) \\ 78.8 (1) \\ 78.8 (1) \\ 78.8 (1) \\ 120.0 (1) \\ 131.6 (1) \\ 81.3 (1) \\ 81.3 (1) \\ 81.3 (1) \\ 81.3 (1) \\ 73.3 (1) \\ 85.0 (1) \\ 127.8 (1) \\ 12$	$\begin{array}{c} C10-O9-C8\\ C11-C10-O9\\ O12-C11-C10\\ C11-O12-K1\\ C13-O12-C11\\ C14-C13-O12\\ O15-C14-C13\\ C14-O15-K1\\ C16-O15-K1\\ C16-O15-K1\\ C16-O15-C14\\ C17-C16-O15\\ O18-C17-C16\\ C1-O18-K1\\ C17-O18-K1\\ C17-O18-C1\\ C26-C21-C22\\ O27-C21-C22\\ O27-C22-C21\\ O27-C22\\ O27-C22-C22\\ O27-C22-C22\\ O27-C22-C22\\ O27-C22-C22\\ O27-C22\\ O27-C22-C22\\ O27-C22\\ O27-C22-C22\\ O27-C22-C22\\ O27-C22-C22\\ O27-C22-C22\\ O27-C22-C22\\ O27-C22\\ O27-C22-C22\\ O27-C22-C22\\$	$\begin{array}{c} 111.8 \ (5) \\ 110.2 \ (6) \\ 108.6 \ (5) \\ 106.3 \ (3) \\ 108.0 \ (4) \\ 110.3 \ (4) \\ 107.8 \ (5) \\ 120.7 \ (4) \\ 118.2 \ (4) \\ 118.2 \ (4) \\ 113.7 \ (5) \\ 109.5 \ (5) \\ 108.6 \ (6) \\ 110.2 \ (3) \\ 107.7 \ (3) \\ 112.2 \ (6) \\ 108.8 \ (4) \\ 124.1 \ (4) \\ 126.9 \ (4) \\ 115.9 \ (4) \\ 126.9 \ (4) \\ 115.9 \ (4) \\ 126.9 \ (4) \\ 119.7 \ (5) \\ 119.8 \ (5) \\ 125.6 \ (4) \\ 118.1 \ (4) \\ 118.8 \ (5) \\ 125.6 \ (4) \\ 118.8 \ (5) \\ 125.6 \ (4) \\ 118.8 \ (5) \\ 127.9 \ (5) \\ 123.2 \ (5) \\ 117.9 \ (5) \\ 123.2 \ (5) \\ 117.9 \ (5) \\ 123.2 \ (5) \\ 117.9 \ (5) \\ 123.2 \ (5) \\ 117.9 \ (5) \\ 123.2 \ (5) \\ 117.9 \ (5) \\ 123.2 \ (5) \\ 118.5 \ (5) \\ 124.0 \ (5) \\ 119.3 \ (4) \\ 122.7 \ (4) \\ 136.3 \ (4) \\ \end{array}$

18-crown-6, 0.109 (15) Å² for picrate. 329 refined parameters, $w = [11.3684/\sigma^2(F) + 0.000574F^2]$; max. $\Delta/\sigma 0.323$; max. features on final difference map 0.45, -0.49eÅ⁻³. Final coordinates are given in Table 1, with bond lengths and angles in Table 2.* The molecule

Fig. 1. 18-Crown-6-potassium picrate (1/1).

is shown in Fig. 1. The high final R and Δ/σ values are probably due to incomplete absorption correction for the very thin plate-like specimen used. The final refinement showed some oscillation of parameters. There was no evidence of disorder in the final model.

Related literature. The structures of K⁺ 18-crown-6 complexes have been reviewed by (*inter alia*) Dalley (1978). Recent examples include the (tetraphenyl-porphyrinato)iron(III) bis(benzenedithiolate) salt (Bryn & Strouse, 1981) in which the K⁺ 18-crown-6 unit is centrosymmetric and a phthalocyanine complex in which the K⁺ atom is 1.6 Å from the O-atom plane (Ziolo, Gunther & Troup, 1981). In potassium benzo-15-crown-5 picrate the K⁺ atom is 1.71 Å from the plane of the O atoms but there is no interaction between K⁺ and picrate (Bhagwat, Manohar & Poonia, 1981). Both $-O^-$ and $-NO_2$ groups are coordinated to K⁺ in potassium picrate (Palenik, 1972).

References

- BHAGWAT, V. W., MANOHAR, H. & POONIA, N. S. (1981). Inorg. Nucl. Chem. Lett. 17, 207-210.
- BRYN, M. P. & STROUSE, C. E. (1981). J. Am. Chem. Soc. 103, 2622–2635.
- DALLEY, N. K. (1978). In Synthetic Multidentate Macrocyclic Compounds, edited by R. M. IZATT & J. J. CHRISTENSEN, Ch. 4. New York: Academic Press.
- MOTHERWELL, W. D. S. & CLEGG, W. (1978). *PLUTO*. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
- PALENIK, G. J. (1972). Acta Cryst. B28, 1633-1637.
- ROBERTS, P. & SHELDRICK, G. M. (1975). XANADU. Program for crystallographic calculations. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1986). SHELXS86. Program for crystal structure determination. Univ. of Göttingen, Federal Republic of Germany.
- ZIOLO, R. F., GUNTHER, W. H. H. & TROUP, J. M. (1981). J. Am. Chem. Soc. 103, 4629–4630.

^{*} Lists of structure factors, anisotropic thermal parameters and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44522 (17 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.